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Polar magneto-optic Kerr and Faraday effects in finite periodic PT -symmetric systems
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We discuss the anomalous behavior of the Faraday (transmission) and polar Kerr (reflection) rotation angles of
the propagating light, in finite periodic PT -symmetric structures, consisting of N cells. The unit-cell potential is
two complex δ potentials placed on both boundaries of the ordinary dielectric slab. It is shown that, for a given set
of parameters describing the system, a phase transitionlike anomalous behavior of Faraday rotation (FR) and Kerr
rotation (KR) angles in a parity-time-symmetric system can take place. In the anomalous phase the value of one
of the Faraday and Kerr rotation angles can become negative, and both angles suffer from spectral singularities
and give a strong enhancement near the singularities. We also show that the real part of the complex angle of KR,
θR

1 , is always equal to the θT
1 of FR, no matter what phase the system is in due to the symmetry constraints. The

imaginary part of KR angles θRr/l

2 is related to the θT
2 of FR by parity-time symmetry. Calculations based on the

approach of the generalized nonperturbative characteristic determinant, which is valid for a layered system with
randomly distributed delta potentials, show that the Faraday and Kerr rotation spectrum in such structures has
several resonant peaks. Some of them coincide with transmission peaks, providing simultaneous large Faraday
and Kerr rotations enhanced by one or two orders of magnitude. We provide a recipe for funding a one-to-one
relation in between KR and FR.

DOI: 10.1103/PhysRevA.107.053504

I. INTRODUCTION

The study of the magneto-optic effects [Faraday rotation
(FR) and Kerr rotation (KR)] has played an important role
in the development of electromagnetic theory and atomic
physics. Both effects are magneto-optical phenomena in
which an electromagnetic wave propagates through a medium
altered by the presence of an external magnetic field. In such
magneto-optical materials (also called gyrotropic or gyromag-
netic) exhibiting FR and KR, left- and right-rotating elliptical
polarizations propagate at different speeds, leading to a num-
ber of important phenomena, such as a rotation of the planes
of the transmitted (FR) and reflected (KR) light. These two
effects are essential for optical communication technology
[1–3], optical amplifiers [4,5], and photonic crystals [6,7].
In addition to this important application, the KR is also an
extremely accurate and versatile research tool and can be
used to determine quantities as varied as anisotropy con-
stants, exchange-coupling strengths, and Curie temperatures
(see, e.g., Ref. [8].) Recently, Ref. [9] established a direct
relationship between galvanomagnetic and magneto-optical
phenomena in the noble metals. Another interesting result was
obtained experimentally between Faraday and Kerr rotations
and quantum Hall steps. The latter is related to the angle of
rotation and the fine-structure constant (see, e.g., Ref. [10]).

In polar or magneto-optical Kerr effect, the magnetization
of the system is in the plane of incidence and perpendicular to

*Antonio.Perez@upct.es
†pguo@csub.edu
‡vgasparyan@csub.edu
§esther.jferrandez@upct.es

the reflecting surface. Reflection can produce several effects,
including (1) rotating the direction of light polarization, (2) in-
troducing ellipticity into the reflected beam, and (3) changing
the intensity of the reflected beam.

FR is similar to KR in terms of rotation and ellipticity and
has a wide range of applications in various fields of modern
physics, such as measuring magnetic field in astronomy [11]
and construction of optical isolators for fiber-optic telecom-
munication systems [12], as well as the design of optical
circulators used in the development of microwave integrated
circuits [13–15].

Note that large Faraday and Kerr rotations are needed for
all the applications mentioned. However, the standard method,
based on increasing the sample size or applying a strong exter-
nal magnetic field, is currently ineffective due to the small size
of systems in which the de Broglie wavelength is compatible
with the size of quantum devices. In other words, thin-film
materials exhibiting a large FR angle should be desirable for
promoting progress in optical integrated circuits.

A large enhancement of the FR and as well as a change in
the sign of the FR can be obtained by incorporating several
nanoparticles and their composites in nanomaterials (see, e.g.,
Refs. [16–18]). A phase transitionlike anomalous behavior of
Faraday rotation angles in a simple PT -symmetric model of
a regular dielectric slab was reported recently in Ref. [19].
In anomalous phase, the value of one of the Faraday rotation
angles turns negative, and both angles suffer spectral singular-
ities and yield strong enhancement near singularities.

As for the enhancing of the KR, in which we are interested
too, it is mainly related to spin-orbit coupling strength [20],
interference effects [21], and plasma resonance of the free
carriers of magnetic materials [22]. As it was mentioned in
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FIG. 1. Schematic of a one-dimensional PT -symmetric photonic heterostructure, consisting of a 2N + 1 arbitrary number of slabs that
are PT symmetric about x0 = 0, that is, ε(x) = ε∗(−x). Each slab of the photonic heterostructure has two balanced complex tiny slabs placed
at both ends of a real dielectric slab. The green slab indicates the loss and the red slab indicates the gain region.

Ref. [23], addition of a gold nanodisc to the periodic magnetic
system yields a strong wavelength-dependent enhancement of
the KR. Generally, the enhancement factor can be expected
to be large by proper choice of materials. The merits of a
magneto-optic/(nonmagnetic-metallic) structure indicate that
a better Kerr enhancement effect can be achieved if the refrac-
tive index of the magneto-optic layer is larger than 1 and is
much larger than that of the metallic material [21].

In this paper we aim to present a complete and quantita-
tive theoretical description of the Faraday and Kerr complex
rotations for an arbitrary one-dimensional finite periodic PT -
symmetric system, consisting of (2N + 1) cells, and for some
simple cases we give simple closed form expressions describ-
ing the FR and KR.

We illustrate that the Faraday and Kerr rotation angles of
the polarized light traveling through a PT -symmetric periodic
structure display phase transitionlike anomalous behaviors.

In one phase (normal phase), the FR and KR angles behave
normally as in a regular passive system with a positive permit-
tivity, and stay positive all the time as expected. In the second
anomalous phase, the angle of FR and KR angles may change
the sign and turn negative. In addition, spectral singularities
arise in the second anomalous phase, where the angles FR and
KR increase strongly. In this sense, PT systems seem to be a
good candidate for constructing fast tunable and switchable
polarization rotational ultrathin magneto-optical devices in a
wide frequency range with giant FR and KR rotations. Despite
that, the obtained results are, in general, only suitable for
numerical analysis. However, in some simple cases approx-
imate expressions can be derived and a qualitative discussion
is possible.

The paper is organized as follows. In Sec. II the complex
Faraday and Kerr effects are introduced and discussed for a
PT -symmetric unit cell with two complex δ potentials. We
will assume that the strengths of two Dirac δ functions Z1

and Z2 are arbitrary complex numbers. The periodic system
with 2N + 1 cells is is discussed in Sec. III, followed by the
discussions and summary in Sec. IV.

II. GENERAL THEORY OF FARADAY AND KERR
EFFECTS IN PT -SYMMETRIC DIELECTRIC SLABS

In this section, before discussing in detail the Faraday and
Kerr effects in a simple unit cell—an ordinary dielectric slab
with two complex δ potentials located at both boundaries (the
unit cell located symmetrically about x0 = 0 in Fig. 1)—we

present some details of the rotation angle calculation for an
arbitrary one-dimensional dielectric permittivity profile ε(x).
Later, we will impose the condition ε(x) = ε∗(−x), which
guarantees the system is PT symmetric and that its eigen-
states are real-valued solutions. In such a PT -symmetric
dielectric system with a finite spatial extension in the x di-
rection (see Fig. 1), the permittivity of the system (as well as
the single slab) has a balanced gain and loss.

Assume a linearly polarized electromagnetic plane wave
with angular frequency ω enters the system from the left
at normal incidence propagating along the x direction. The
polarization direction of the electric field of the incident wave
is taken as the z axis: E0(x) = eik0xẑ, where k0 = ω

c

√
ε0 stands

for the wave vector and ε0 denotes the dielectric constant of
the vacuum. A weak magnetic field B, which preserves the
linearity of Maxwell’s equations, is applied in the x direction
and is confined into the system (see Fig. 1). The scattering of
the incident wave by the system is described by Schrödinger-
like equations (see, e.g., Refs. [24,25]):[

d2

dx2
+ ω2ε±(x)

c2

]
E±(x) = 0, (1)

where E± = Ey ± iEz are circularly polarized electric fields.
The ε±(x) is defined:

ε±(x) =
{
ε(x) ± g, x ∈ [ − L

2 − N (L + L0), L
2 + N (L + L0)

]
,

ε0, otherwise,
(2)

where (L, L0, 2N + 1) stand for the spatial extent of a unit
cell, the spatial separation of two neighboring cells, and the
number of cells (see Fig. 1). The g is the gyrotropic vector
along the magnetic-field direction. The external magnetic field
B is included into the gyrotropic vector g to make the calcu-
lations valid for the cases of both external magnetic fields and
magneto-optic materials.

When the reflection within the boundaries is important, the
outgoing transmitted or reflected wave is generally elliptically
polarized even without absorption, where the major axis of the
ellipse is rotated with respect to the original direction of polar-
ization and the maximum FR (KR) angle does not necessarily
coincide with angular frequencies ω of light at which zero
ellipticity can be measured. The real part of the rotation angle
describes the change of polarization in linearly polarized light.
The imaginary part describes the ellipticity of transmitted or
reflected light. Once we know the scattering matrix elements
r±(ω) and t±(ω) of the one-dimensional light propagation
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problem, e.g., the reflection and transmission amplitudes with
an incoming propagating wave from the left are defined by

E±(x) →
{

±i[eik0x + r±(ω)e−ik0[x+L+2N (L+L0 )]], x → −∞,

±it±(ω)eik0[x−L−2N (L+L0 )], x → +∞.
(3)

The two characteristic rotational parameters of transmitted
light (magneto-optical measurements of the complex Fara-
day angle) can be written as a complex form as (see, e.g.,
Refs. [24,25])

θT
1 = ψT

+ − ψT
−

2
, θT

2 = 1

4
ln

T+
T−

, (4)

where T± and ψT
± are the transmission coefficients and phase

of transmission amplitudes, t± = √
T±eiψT

± , of transmitted
electric fields. For weak magnetic field (g � 1), the pertur-
bation expansion in terms of the weak magnetic field can be
applied. The leading-order contribution can be obtained by
expanding ψ± and T ± around the refractive index of the slab
in the absence of the magnetic field B:

θT
1 = g

2n

∂ψT

∂n
, θT

2 = g

4n

∂ ln T

∂n
, (5)

where n = √
ε is the refractive index of the slab. The Kerr

rotation complex angles are defined in a similar way as in
Eq. (4). In the weak magnetic field, the leading-order expres-
sions can be written in the form

θR
1 = g

2n

∂ψR

∂n
, θR

2 = g

4n

∂ ln R

∂n
, (6)

where R and ψR are the reflection coefficients and phase
of reflection amplitudes in the absence of magnetic field B:

r(ω) = √
Re

iψR

.
We remark that FR and KR angles are not all independent

due to the constraints of PT symmetry. As mentioned in
Ref. [26], the parametrization of the scattering matrix only
requires three independent real functions in a PT -symmetric
system: one inelasticity, η ∈ [1,∞], and two phase shifts,
δ1,2. In terms of η and δ1,2, the reflection and transmission
amplitudes are given by

t = t r = t l = η
e2iδ1 + e2iδ2

2
,

rr/l = η
e2iδ1 − e2iδ2

2
± i

√
η2 − 1ei(δ1+δ2 ), (7)

where subscripts r and l are used to label amplitudes corre-
sponding to two independent boundary conditions: right (eik0x)
and left (e−ik0x) propagating incoming waves, respectively.
Therefore we find the relations

√
T = η cos(δ1 − δ2),

ψT = δ1 + δ2,

√
Rr/l = |η sin(δ1 − δ2) ±

√
η2 − 1|, ψR = ψT + π

2
,

(8)

and the pseudounitary conservation relations take place (see,
e.g., Refs. [27–29]):

|T − 1| =
√

RlRr . (9)

The FR and KR angles are given by

θT
1 = θR

1 = g

2n

∂ (δ1 + δ2)

∂n
,

θT
2 = g

2n

∂

∂n
ln [η cos(δ1 − δ2)],

θRr/l

2 = g

2n

∂

∂n
ln |η sin(δ1 − δ2) ±

√
η2 − 1|. (10)

The θRr/l

2 and θT
2 are hence related by

θRr

2 + θRl

2

2
= T

T − 1
θT

2 . (11)

We thus conclude that only three FR and KR angles are
independent due to the symmetry constraints. The special case
of zero inelasticity (η = 0) thus represents the results for real
spatially symmetric dielectric systems with ε(x) = ε(−x) and
Im[ε(x)] = 0, hence

θT
2

Im[ε(x)]→0→ g

2n

∂

∂n
ln cos(δ1 − δ2),

θRr/l

2
Im[ε(x)]→0→ g

2n

∂

∂n
ln |sin(δ1 − δ2)|. (12)

III. UNIT CELL: TWO COMPLEX δ POTENTIALS PLACED
ON BOTH BOUNDARIES OF THE ORDINARY

DIELECTRIC SLAB

We first present some main results of FR and KR for a unit
cell in this section; all the technical details can be found in the
Appendix. The properties of the spectral singularities are also
discussed in the current section, and we draw attention to the
parameter ranges where a phaselike transition can take place
for both Faraday and Kerr effects. A simple PT -symmetric
model for a unit cell is adopted in this paper: two complex δ

potentials are placed at both ends of the dielectric slab:

ε(x) = ε + Z1δ

(
x + L

2

)
+ Z2δ

(
x − L

2

)
,

Z1 = V1 + iV2, Z2 = Z∗
1 , (13)

where L denotes the spatial extent of the unit cell of the dielec-
tric slab and ε > 0 is the positive and real permittivity of the
slab. The transmission t0(ω) and reflection r0(ω) amplitudes
for the unit cell can be obtained rather straightforwardly by
matching the boundary condition method or using the explicit
form of characteristic determinant D2 in Eq. (A6). We remark
that the δ potential can be considered as the limiting case of a
narrow dielectric slab as the width of the slab is approaching
zero, but the product of permittivity and the width of the slab
remains fixed to Z1,2.

First of all, inserting Eq. (A3) in Eq. (A5) and also using
(A1) it is easy to see that t0(ω), phase ψT , and transmission
coefficient T0 for a unit cell are, respectively, given by

t0(ω) = √
T0eiψT = csc

(
ωn
c L

)
R(ω) − iI (ω)

,

ψT = tan−1

[ I (ω)

R(ω)

]
, T0 = csc2

(
ωn
c L

)
R2(ω) + I2(ω)

, (14)
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where

R(ω) = cot
(ωn

c
L
)

− ωV1

cn
,

I (ω) = ωV1

cn0
cot

(ωn

c
L
)

+ 1

2

(
n

n0
+ n0

n

)
− ω2

2c2n0n

(
V 2

1 + V 2
2

)
. (15)

The n = √
ε and n0 = √

ε0 denote the refractive index of
the dielectric slab and vacuum, respectively. We remark that
unphysical units are adopted throughout the rest of the paper:
ε0 = 1, the length of slab L, is used to illustrate the physical
scale, and V1,2 and ε = n2 hence carry the dimensions of 1/L
and 1/L2, respectively. The ω/c is a dimensionless quantity.

Next the reflection amplitude rr/l
0 (ω) to the left and right

of an individual cell can be obtained conveniently from the
following relation related to the derivative of the transmission
amplitude t0(Z1, Z2) with respect to Z1 and Z2 located on the
left and right border of the slab (see Ref. [30]):

rr
0(ω) = −i

cn0

ω

∂ ln t0(ω)

∂Z1
− 1,

rl
0(ω) = −i

cn0

ω

∂ ln t0(ω)

∂Z2
− 1. (16)

Hence we find

rr/l
0 (ω) =

√
Rr/l

0 eiψR = i
Qr/l (ω)

R(ω) − iI (ω)
,

ψR = tan−1

[ I (ω)

R(ω)

]
+ π

2
,

Rr/l
0 = [Qr/l (ω)]2

R2(ω) + I2(ω)
, (17)

where

Qr/l (ω) = ωV1

cn0
cot

(ωn

c
L
)

+ 1

2

(
n

n0
− n0

n

)
± ωV2

cn

− ω2

2c2n0n

(
V 2

1 + V 2
2

)
. (18)

Note, that in case of n0 = n we recover the result of a reflec-
tion amplitude from a simple diatomic system, discussed in
Ref. [31]. It is easy to verify that the phase of the reflection
amplitude indeed coincides with the phase of the transmission
amplitude as previously discussed. In the next subsections we
used these expressions to illustrate a number of quite general
features of Faraday and Kerr rotations in PT -symmetric peri-
odic systems.

A simple inspection of Eq. (14) shows that replacing ω

with −ω does not affect t0(ω), which means that the transmis-
sion is equal for the left-to-right and right-to-left scattering,
that is, t l

0(ω) = t r
0 (−ω) ≡ t0(ω). The situation is somewhat

more complicated in the case of the reflection amplitude in
Eq. (17). Simultaneous sign change of both ω and V2 is
required to satisfy the condition rl

0(−ω,−V2) = rr
0(ω,V2).

These in fact are indeed the general properties of PT systems
[see, e.g., Eq. (B33) in Ref. [26]].

A. Spectral singularities in a unit cell

We now turn to a closer investigation of the spectral sin-
gularities for FR and KR angles. Spectral singularities are
spectral points belonging to non-Hermitian Hamiltonian op-
erators in general with PT symmetry, characterized by real
energies. At these energies, the reflection and transmission
coefficients tend to infinity, i.e., they correspond to resonances
having zero width. Interesting to note that a slight imbalance
between gain and loss regions can change the shape of the
transition from zero width to the symmetric shape of the “bell
curve” (for more details see Ref. [19]). We remark that spec-
tral singularities could appear in non-Hermitian Hamiltonians
that are not PT symmetric as well (see, e.g., Ref. [32]).

For our model and for FR and KR rotational effects, spec-
tral singularities arise when both conditions, R(ω) = 0 and
I (ω) = 0, are satisfied simultaneously [see Eq. (15)]. By solv-
ing Eq. (15) for cot(kL) and ω one obtains straightforwardly(

ωcr|V |
c

)2

cos 2ϕV + n2 + n2
0 = 0, |V | =

√
V 2

1 + V 2
2 ,

(19)

where tan(ϕV ) = I(ωcr )
R(ωcr ) . The condition necessary for the ex-

istence of a solution of the spectral singularities exists only
when the transmission phase is in the range ϕV ∈ [π/4, π/2].
Hence the critical value of ωcr is defined as

ωcr = c

|V |

√
n2 + n2

0√| cos 2ϕV | , (20)

provided that

cot

(
ωcr

c
nL

)
=

√
n2 + n2

0

n

cos ϕV√| cos 2ϕV | . (21)

For a fixed |V |, as follows from Eq. (20) the solutions of
spectral singularities can only be found in a finite range: ϕV ∈
[π

4 , ϕc], where ϕc stands for the upper bound of the range.
Hence as ϕV approaches the lower bound of the range at π

4 , the
spectral singularity solution occurs at large frequency: ω →
∞. When ϕV is increased, the solution of spectral singularity
moves toward lower frequencies. As ϕV approaches the upper
bound of the range at ϕc, the spectral singularity solution
thus reaches its lowest value. The graphical illustration of the
distribution of spectral singularities can be found in Fig. 2 in
Ref. [19].

B. Faraday and Kerr rotation: Transmitted and reflected light

A phase transitionlike anomalous behavior and properties
of Faraday rotation angles in a simple PT -symmetric model
with two complex δ potentials placed at both boundaries of a
regular dielectric slab was most recently reported in Ref. [19].
Let us recall the essential features of the FR and then focus our
attention on the KR effect. In a PT -symmetric system a phase
transitionlike anomalous behavior of Faraday rotation angle
take place. In this phase, one of the Faraday rotation angles
turns negative, and both angles yield strong enhancement near
spectral singularities.
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FIG. 2. Faraday and Kerr rotation angles θT
1,2 and θRr

1,2 vs ω

c are shown for two values of ϕV = 0.1π and 0.4π for the PT -symmetric unit
cell: (a) θT

1 = θR
1 for ϕV = 0.1π , (b) θT

1 = θR
1 for ϕV = 0.4π , (c) θRr

2 (solid red) vs θT
2 (solid black) for ϕV = 0.1π , and (d) θRr

2 (solid red) vs
θT

2 (solid black) for ϕV = 0.4π . The rest of parameters are taken as |V | = 1, L = 0.8, n = √
2, and n0 = 1.

As the consequence of the PT -symmetry constraint, the
phase of reflected amplitude ψR from the left coincides with
the phase of the transmission amplitude ψT [see Eq. (8)].
Hence the real part of the complex angle of KR, θR

1 , is always
equal to the θT

1 of FR, no matter what phase the system
is in. In this sense, the situation is similar to the passive
symmetric system, where it is always θR

1 = θT
1 . It is inter-

esting to note that Eq. (15) is invariant under the symmetry
transform: V2 → −V2. This is a manifestation of the fact that
the phase of reflected amplitude ψR and the Kerr rotation
angle for the right incident light preserve the same behavior,
although the strengths of the right and left δ potentials on the
boundaries are not equal to each other (more precisely, they
are complex conjugate to each other). The mentioned asym-
metry should lead to different left-to-right and right-to-left
reflection amplitudes (see, e.g., Ref. [33]) and does not affect
physical quantities θR

1 and θT
1 , which are related to the phase

accumulated during the process of reflection and transmission
and to the density of states. However, this asymmetry will
affect θR

2 and θT
2 , and they will no longer be equal to each

other [see Figs. 2(c) and 2(d)]. This is consistent with the
general statement that the Faraday and Kerr rotation profiles

are very different from the corresponding curves describing
ellipticities. In addition, the symmetry constraint also yields
the wavelength dependence of Faraday and Kerr ellipticity θT

2

and θRr/l

2 shown in Eq. (11).
Here we would like to add a few more brief comments to

emphasize that a closer look at Fig. 2 reveals some details of
the similarities between curves that are relevant to our further
discussion.

First, the Faraday (Kerr) rotation local maximum and mini-
mum (see Fig. 2) coincide with the local peak on the ellipticity
curves with some accuracy. The ellipticity, at those frequen-
cies, approaches zero nonlinearly and becomes zero (linearly
polarized light), and then the resulting polarization reverses
its original direction.

Secondly, ellipticity (the imaginary part the spectra) for
θT

2 and θR
2 depends little on frequency and is close to zero

in almost the entire frequency range, except for some regions
associated with the maximum and minimum or spectral sin-
gularities of the Faraday rotation and Kerr rotation.

The questions discussed above can be straightforwardly
generalized for the periodic PT -symmetric system. This will
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FIG. 3. Plot of Faraday θT
2 (solid red) and Kerr θRr

2 (solid black)
rotation angles shown for |V | = 1, ϕV = π

2 , L = 0.8, n = √
2, and

n0 = 1 for the PT -symmetric unit cell. The resonant frequencies at
ωl n

c L = π l, l = 1, 2, . . . are plotted as dashed pink vertical lines.

be done in the next section. We will show that the anomalous
effect, similar to a phase transition, occurred more often due
to the complex structure of the transmission and reflection
amplitudes.

C. Limiting cases

The phase transitionlike behavior of θT
1 for two limiting

cases (|V | → ∞ and V1 → 0) was discussed in Ref. [19].
It was shown that in the case of |V | → ∞ the sign of θT

1
is completely determined by ϕV . As for the case V1 = 0
(ϕV → π

2 ), again for the given parameters of the problem the
anomalous negative behavior of θT

1 is illustrated analytically.
The latter case, that is, a PT -symmetric optical lattice with
a purely imaginary scattering potential, has been discussed
in detail in a number of investigations both theoretically and
experimentally (see, e.g., Ref. [33] and references therein).

1. |V | → ∞
The situation is slightly different for Kerr rotation. In the

same limiting case |V | → ∞, given that nωL
c 	= π l , we can

show that θR
2 ∝ 1

|V |2 , hence the ellipticity is almost zero for all

frequencies excluding nωL
c = π l where l ∈ Z and the reflected

light remains linearly polarized. At the discrete values of
ω/c = π l

nL that yield the location of the resonance poles, θR
2

displays a sharp peak with narrow resonance width. It reflects
the fact that the reflected light is again linearly polarized but
rotated 90◦ from the initial direction.

2. V1 → 0

Bound-state solutions of the Schrödinger equation for a
PT -symmetric potential with Dirac delta functions were stud-
ied in Ref. [34]. In Ref. [19] it was pointed out that despite the
fact that the expression for θT

1 is valid for the case V1 → 0,
it can still explain not only the sign change of θT

1 (θR
1 ) in

Fig. 2(a) where V1 	= 0, but also the existence of the first
local maximum. It is clear that further features of the θT

1 (θR
1 )

in Fig. 3(a) near the frequencies of spectral singularities are
related to the behavior of T (ω).

As for the imaginary portion of Kerr effect θRr/l

2 , it is
straightforward to show that in the same limit of V1 → 0 the
θRr/l

2 reads

θRr/l

2
V1→0→ g

2nQ(ω)

[
1

2

(
1

n0
+ n0

n2

)
∓ ω

cn2
V2

(
1 ∓ ω

2cn0
V2

)

+ Rr/l
0

Qr/l (ω)

(
ωL

c

cot
(

nω
c L

)
sin2

(
nω
c L

) − n2 − (
n2

0−ω2

c2 V 2
2

)2

4n2
0n3

)]
,

(22)

where the reflection coefficient Rr/l
0 is given by Eq. (14) and

Qr/l (ω) is defined by Eq. (18). The dependence of the imag-
inary part of the Kerr rotation θRr

2 (solid black line) on ω
c for

V1 → 0 is illustrated in Fig. 3. A number of basic features of
θR

2 can be observed even in this simplest case of V1 → 0. One
of the key features is the single resonant peak that shows up
clearly when R0 → ∞ [see Eq. (22)]. As mentioned above
the resonance frequencies are spectral singularities when both
conditions, R(ω) = 0 and I (ω) = 0, are satisfied simulta-
neously. In the particular case of V1 → 0 there is only one
ωcr that can be directly calculated from Eq. (20) by putting

ϕV = π
2 : ωcr = c

√
n2+n2

0

V2
. The second condition cot( ωcr

c nL) =
0 can be satisfied by choosing the appropriate value of length
is L = 0.8 (the system parameters are n0 = c = V2 = 1, n =√

2, and ωcr = √
3). Other maxima or minima in the Kerr

rotation, located near the resonant frequencies, are associated
with multiple reflections from the boundaries and are located
at ωl n

c L = π l, l = 1, 2, . . . (see vertical pink lines in Fig. 3).
Repeating similar calculations leading to Eq. (22), we ar-

rive at an explicit expression for ellipticity θT
2 for Faraday

rotation for this simplest case with a purely imaginary poten-
tial:

θT
2

V1→0→ g

2n
cot(kL)

ω

c
L

×
[
T0

(
1 − sin2(kL)

cot(kL)

c

ωL

n2 − (
n2

0 − ω2

c2 V 2
2

)2

4n2
0n3

)
− 1

]
.

(23)

We observe that the smoothed maxima and minima that ap-
peared around the zeros of sin kL at ωl n

c L = π l, l = 1, 2, . . .

coincide with maxima and minima of θR
2 and are associated

with multiple reflections from the boundaries (see, e.g., ver-
tical yellow lines in Fig. 3). Secondly, the large value of θT

2
at 3π/2 is related to the frequency of the spectral singularity

ωcr = c
√

n2+n2
0

V2
, where T0 → ∞.

The physical background of the relatively simple math-
ematical structure of the Faraday rotation angle θT

1 on the
frequency of Kerr ellipticity θRr/l

2 is that in the first case
the rotation maximum is directly proportional to the optical
anisotropy [for example, the larger (n+ − n−), the larger θT

1 ].
However, the maximization of θRr/l

2 is not so straightforward,
since anisotropy indices are mixed (see, e.g., Ref. [35] and
references therein).
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IV. PERIODIC SYSTEM WITH 2N + 1 CELLS

It is known that when the wave propagation through a
medium is described by a differential equation of second
order, the expression for the total transmission from the finite
periodic system for any wave (sound and electromagnetic)
depends on the unit-cell transmission, the Bloch phase, and
the total number of cells. As an example of collective inter-
ference effect, let us mention the intensity distribution from
N slits (diffraction due to N slits), as well as the formula
that describes Landauer’s resistance of a one-dimensional
chain of periodically spaced N random scatterers. In both
cases, the similarity of the results is obvious. However, the
physics behind these results is completely different both in
spirit and in details. In analogy to the Hermitian Hamilto-
nian, one can expect the interference effect holds also for
a non-Hermitian Hamiltonian system. In this sense it is a
natural result for a PT -symmetric system that a somewhat
similar formula for transmission and reflection amplitudes
appears, for example, in Refs. [31,36–38]. The infinite peri-
odic PT -symmetric structures, because of unusual properties,
including the band structure, Bloch oscillations, unidirec-
tional propagation, and enhanced sensitivity, are of special
interest and are presently the subject of intensive ongoing
research (see, e.g., Refs. [39–42] and references therein).
However, the case of scattering in a finite periodic system
composed of an arbitrary number of cells and scatters has
been less investigated, despite that any open quantum system
generally consists of a finite system coupled with an infinite
environment.

In many studies, to describe quantitatively both amplifica-
tion and absorption in periodic PT -symmetric systems, the
transfer-matrix method is used, which can be reduced to the
evolution of the product of transfer matrices of complex but
identical unit cells and using the classical Chebyshev identity
will get the final result.

In the following, we present the amplitudes of transmission
and reflection form the left and right sides of the incident
wave based on the characteristic determinant approach; the
technical details are given in the Appendix. The latter, in
principle, is compatible with the transfer-matrix method and
is convenient for both numerical and analytical calculations.

A. Amplitudes of transmission and reflection from left and right

We now turn to a closer investigation of the Faraday
and Kerr rotations for various parameter ranges of our PT -
periodic symmetric system that consists of 2N + 1 cells (see
Fig. 1). Following Refs. [31,43] (also see the Appendix), a
generic expression for the transmission and left and right
reflection amplitudes for the PT can be presented as

t (ω) = e−ik0L0

cos[β(2N + 1)�] + iIm
[

e−ik0L0

t0(ω)

] sin[β(2N+1)�]
sin(β�)

, (24)

where k0 = n0
ω
c and k = n ω

c are the wave vectors in the re-
spective medium. The quasimomentum β is the Bloch wave
vector of the infinite periodic system with unit-cell length or

spatial periodicity � = L0 + L:

cos(β�) ≡ Re

[
e−ik0L0

t0(ω)

]
= sin(kL)[cos(k0L0)R(ω) − sin(k0L0)I (ω)]. (25)

The left or right reflection amplitude can be written in the form
[31,43]

r (r/l )(ω)

t (ω)
=

[
r (r/l )

0 (ω)

t0(ω)

]
sin[β(2N + 1)�]

sin(β�)
, (26)

where t0(ω) and r (r/l )
0 (ω) are the transmission and reflection

amplitudes for a single cell (N = 0) that are given in Eqs. (14)
and (17), respectively.

An important feature of expressions (24) and (26) is that
both contain factor sin[β(2N+1)�]

sin(β�) which naturally occurs in
Hermitian one-dimensional finite periodic systems due to in-
terference or diffraction effects and reflects a combined effect
of all 2N + 1 cells. The appearance of this factor in non-
Hermitian systems is highly nontrivial from the view of the
usual probability conservation property for Hermitian systems
(the reflection and transmission coefficients must sum to units
in either classical or quantum-mechanical regimes) or unitary
scattering matrix theory. However, in Refs. [31,36] a simple
closed form expression is obtained for the total transmission
and reflection (left and right) amplitudes from a lattice of
N cells. As pointed out in Ref. [31], the transmission and
reflection amplitudes for a periodic many-scatter system are
related to single cell amplitudes in a compact fashion. This
is intimately connected with the factorization of short-range
dynamics in a single cell and the long-range collective effect
of the periodic structure of the entire system: the short-range
interaction dynamics is described by single cell scattering
amplitudes and the β represents the collective mode of the
entire lattice. The occurrence of factorization of short-range
dynamics and the long-range collective mode has been known
in both condensed-matter physics and nuclear and hadron
physics. In the case of particles interacting with short-range
potential in a periodic box or trap, where there are two phys-
ical scales, (1) the short-range particles dynamics and (2) the
long-range geometric effect due to the periodic box or trap
are clearly separated. The quantization conditions are given
by a compact formula that is known as the Korringa-Kohn-
Rostoker method [44,45] in condensed-matter physics, the
Lüscher formula [46] in lattice quantum chromodynamics,
and the Busch-Englert-Rzażewski-Wilkens formula [47] in
a harmonic oscillator trap in the nuclear physics commu-
nity. Other related useful discussions can be found in, e.g.,
Refs. [48–51].

The above statement can also be demonstrated by the
expression of transmission coefficient T = |t |2 for the finite
system with 2N + 1 cells:

1

T
= 1 + rr

0

t0

rl
0
∗

t0∗
sin2[β(2N + 1)�]

sin2(β�)

= 1 +
(

1

T0
− 1

)
sin2[β(2N + 1)�]

sin2(β�)
. (27)
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In addition, Eq. (27) shows that there are two distinct
cases for which an incident wave is totally transmitted, i.e.,
T = 1. This implies perfect resonant transmission with no
losses and no gain, regardless of the complex nature of the
coupling constants.

The first case occurs when there is no reflected wave from
any individual cell and this matches the condition when the

product of rr
0

t0

rl
0
∗

t0∗ in Eq. (27) is zero (or T0 = 1). This would
lead to the unidirectional propagation discussed in several
studies on PT -symmetric systems (see, e.g., Refs. [38,52–
54]). This phenomenon is also referred to as the effect of ex-
ceptional points (EPs) that separate the broken and unbroken
PT -symmetric phases (see, e.g., Refs. [55–58]).

In the second case sin[β(2N + 1)�]/ sin(β�) = 0. It
corresponds to constructive interference between the paths
reflected from different unit cells at

β� = π l

2N + 1
, |l| = 1, . . . , N. (28)

In both cases mentioned, we have a perfect transmission,
that is, T = 1. As a consequence, the product of two reflection
coefficients on the left and right should disappear according to
the formula (9). In the case when one of the reflections reaches
zero while the other remains nonzero, so-called unidirectional
transparency can occur when we have an ideal nonreflective
transmission in one direction but not in the other. The ex-
perimental demonstration of a unidirectional reflectionless at
optical parity time metamaterial at optical frequencies is re-
ported in Ref. [52]. An outlook on the potential directions and
applications of controlling sound in non-Hermitian acoustic
systems can be found in Ref. [59].

B. Spectral singularities in a periodic system with 2N + 1 cells

To illustrate the influence of the two factors mentioned
above, as well as the role of spectral singularities on the
formation of Faraday and Kerr rotations and their shapes,
let us note that (i) the spectral singularities arise when both
conditions, Re(ω) = 0 and Im(ω) = 0, are satisfied simulta-
neously and (ii) the location of these poles can be found by
solving 1/t (k) = 0. Based on Eq. (24), there are two types of
solutions, as was mentioned above.

(i) Type-I singularities are given by solutions of 1
t0(ω) = 0.

Hence cos(β�) = 0 and 1
t (ω) = 0 are both automatically sat-

isfied:

β� = π l + π

2
, l ∈ Z. (29)

The type-I singularities are originated from a single cell (N =
0), and shared by the entire system of 2N + 1 cells. The type-I
solutions are independent of number of cells and the size of
system. The detailed discussion about type-I singularities can
be found in Sec. III A.

(ii) Type-II singularities depend on the size of the system
and are given by two conditions:

cos (β(2N + 1)�) = 0, Im

[
e−ik0L0

t0(k)

]
= 0. (30)

Hence β� = π (l+ 1
2 )

2N+1 where l ∈ Z, and the above two condi-
tions are given explicitly by

sin
(nωcr

c
L
)[

cos
(n0ωcr

c
L0

)
R(ωcr ) − sin

(n0ωcr

c
L0

)
I (ωcr )

]
= cos

π
(
l + 1

2

)
2N + 1

,

cos
(n0ωcr

c
L0

)
I (ωcr ) + sin

(n0ωcr

c
L0

)
R(ωcr ) = 0. (31)

At the limit of V1 → 0, the two conditions are reduced to

V 2
2 ω2

ωcr

2c2nn0
− tan

(
n0ωcrL0

c

)
cot

(
nωcrL

c

)
= 1

2

(
n0

n
+ n

n0

)
,

cos
π

(
l + 1

2

)
2N + 1

= cos
( nωcrL

c

)
cos

( n0ωcrL0
c

) .

(32)

C. Large N limit

As number of cells is increased, all FR and KR angles
demonstrate fast oscillating behavior due to sin[β(2N + 1)�]
and cos[β(2N + 1)�] functions in transmission and reflection
amplitudes. These behaviors are very similar to what happens
for tunneling time of a particle through layers of periodic
PT -symmetric barriers that is discussed in Ref. [31]. For the
large N systems, we can introduce the FR and KR angles per
unit cell:

θ̂T/R(ω) = θT/R(ω)

(2N + 1)�
. (33)

The N → ∞ limit may be approached by adding a small
imaginary part to β: β → β + iε, where ε  1

(2L+1)� . As
discussed in Ref. [31], adding a small imaginary part to β

is justified by considering the averaged FR and KR angles
per unit cell, which ultimately smooth out the fast oscillating
behavior of FR and KR angles. Using asymptotic behavior of

sec[β(2N + 1)�] ∝ 2eiβ(2N+1)�, tan[β(2N + 1)�] ∝ 1,

(34)

we find

1

(2N + 1)�
ln t (ω)

N→∞→ iβ,
1

(2N + 1)�
ln r(ω)

N→∞→ 0.

(35)

Therefore, as N → ∞, FR and KR angles per unit-cell
approach

θ̂T
1

N→∞→ − g

2n

∂Re[β]

∂n
, θ̂T

2
N→∞→ g

2n

∂Im[β]

∂n
, θ̂Rr/l

1,2
N→∞→ 0.

(36)
It is also noted that at the large N limit

sin[β(2N + 1)�] ∝ − 1

2i
e−iβ(2N+1)� N→∞→ ∞, (37)

and using Eq. (27) one can show that the transmission co-

efficient therefore approaches zero: T
N→∞→ 0. The relation

between θ̂T
2 and θ̂Rr/l

2 given in Eq. (11) hence is still valid as
N → ∞.

053504-8



POLAR MAGNETO-OPTIC KERR AND FARADAY EFFECTS … PHYSICAL REVIEW A 107, 053504 (2023)

(a) (b)

(c) (d)

FIG. 4. Plot of FR and KR angles with N = 2 vs large N limit result: i g
2n

dβ

dn (solid purple): (a) θ̂T
1 = θ̂R

1 (solid black) vs g
2n

dRe[β]
dn (solid

purple), (b) θ̂T
2 (solid black) vs − g

2n
dIm[β]

dn (solid purple), (c) θ̂Rr

2 (solid black) vs θ̂Rl

2 (dashed red), and (d) band structure plot in the unbroken
phase. The parameters are taken as V1 = 0.31, V2 = 0.95, L = 0.2, L0 = 0.8, n = 2, and n0 = 1.

The examples of FR and KR angles per unit cell for aPT -
symmetric finite system with five cells are shown in Figs. 4
and 5, compared with the large N limit results. We can see in
Figs. 4 and 5 the θT

1 and θT
2 angles oscillating around the large

N limit results. Even for the small size system, we can see
clearly that the band structure of the infinite periodic system is
already showing up. The oscillating KR angles are consistent
with zero at the large N limit. In addition, in the broken PT -
symmetric phase in Fig. 5, EPs can be visualized even for a
small size system, where two neighboring bands merge and
the PT becomes totally transparent: both θT

1 and θT
2 approach

zero.
For a real refractive index profile, the sign of θT

1 is always
positive due to the fact that θT

1 is closely related to the density
of states. However, in PT -symmetric systems, θT

1 is now
associated with a generalized density of states, which can be
either positive or negative (see discussion in Refs. [26,31]).
In this sense the negative spike(s) in Figs. 4 and 5 around
the some frequencies provides the formal justification of the
existence of such negative states. The turning negative of θT

1
is closely related to the motion of poles across the real axis
moving from the unphysical sheet (the second Riemann sheet)

into the physical sheet (the first Riemann sheet); for more
details see Refs. [19,31]. Since θT

1 (θR
1 ) is assumed to be

related to the density of states, it is natural that it is practically
zero in all forbidden bands and takes a giant leap to a very
large number at the end of each band.

V. DISCUSSION AND SUMMARY

In summary, we studied the anomalous behavior of the
Faraday (transmission) and polar Kerr (reflection) rotation
angles of the propagating light, in finite periodic parity-time
(PT ) symmetric structures, containing 2N + 1 cells.

We have obtained closed form expressions for FR and KR
angles for a single cell consisting of two complex δ potentials
placed on both boundaries of the ordinary dielectric slab. It
is shown that, for a given set of parameters describing the
system, a phase transitionlike anomalous behavior of Faraday
and Kerr rotation angles in a parity-time symmetric system
can take place. In the anomalous phase the value of one of
the Faraday and Kerr rotation angles can become negative,
and both angles suffer from spectral singularities and give a
strong enhancement near the singularities. It is shown that due
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(a) (b)

(c) (d)

FIG. 5. Plot of FR and KR angles with N = 2 vs large N limit result: i g
2n

dβ

dn (solid purple): (a) θ̂T
1 = θ̂R

1 (solid black) vs g
2n

dRe[β]
dn (solid

purple), (b) θ̂T
2 (solid black) vs − g

2n
dIm[β]

dn (solid purple), (c) θ̂Rr

2 (solid black) vs θ̂Rl

2 (dashed red), and (d) band structure plot in the broken
phase. The parameters are taken as V1 = 0.31, V2 = 0.95, L = 0.2, L0 = 0.8, n = 2, and n0 = 1.

to symmetry constraints the real part of the complex angle of
KR, θR

1 , is always equal to the θT
1 of FR, no matter what phase

the system is in. The imaginary part of KR angles θRr/l

2 is also
related to the θT

2 of FR by parity-time symmetry.
We find that, in the limit of weak scattering, the Kerr

and Faraday rotation angles increase linearly with the length
of the system. In this approximation the effects of multi-
ple reflections within the layers are not significant. We have
also shown, based on the modified Kramers-Kronig rela-
tions, that only three angles of FR and KR are completely
independent.
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APPENDIX: DETERMINANT APPROACH

This section is devoted to more mathematical interest.
We combine two nonperturbative approaches, that sufficiently
completely describe photon (electron) behavior in a random
potential, to study the energy spectrum and scattering matrix
elements in the PT system without actually determining the
photon eigenfunctions.

In both approaches, the Green’s function was calculated
exactly for two different models. In the first model, we are
dealing with the sum of δ potentials distributed randomly with
an arbitrary strength. The second model was used to calculate
the passage of a free particle through a layered system, which
is characterized by random parameters of the layers.

A convenient formalism to study one-dimensional scatter-
ing systems satisfying the stationary Schrödinger equation or
the Helmholtz equation relevant to optical Bragg grating
is developed in Refs. [60,61]. The approach allows one to
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express the transmission and reflection amplitudes of a wave
propagating in a one-dimensional random layered structure
through the characteristic determinant DN (N is the number
of the boundaries), which depends on the amplitudes of re-
flection of a single scatter only. The transmission amplitude
tN of waves through the systems can be presented in the form

tN = eik|xN −x1|

D0
N

, (A1)

where the characteristic determinant D0
N reduces to a recursive

equation that is convenient for both numerical and analytical
approaches.

This paper presents a generalization of the determinant ap-
proach to the case of PT -symmetric (nonsymmetric) systems
consisting of (N − 1) dielectric multilayers with two delta po-
tentials in each. The detailed and, in many respects, complete
description and analysis of the Faraday and Kerr effects in
such a system is discussed. Specifically, our investigations fo-
cus on the periodic finite-size diatomic PT -symmetric model.
We predict that for a given set of parameters describing the
system the Faraday and Kerr rotation angles show a nontrivial
transition with a change in sign. In the anomalous phase the
value of one of the Faraday and Kerr rotation angles can
become negative, and both angles suffer from spectral singu-
larities and give a strong enhancement near the singularities.

Let us consider a (N − 1) dielectric multilayer system
labeled n = 1, . . . , N − 1 between two semi-infinite media.
The positions of the boundaries of the nth dielectric layer,
characterized by the constant εn, are given by xn and xn+1, re-
spectively. The left and right ends of the system are at x = xN

and x1 with ε0 = εN , respectively. We assume that a plain elec-
tromagnetic wave is incident from the left (with the dielectric
permittivity ε0) onto the boundary at x = x1 and evaluate the
amplitude of the reflected wave and the wave propagating in
the semi-infinite media for x > xN , characterized by εN . In the
further discussion we will assume that the first and last layers
of the multilayer system make interfaces with the vacuum.

We also assume that we know the transmission tn,n+1 and
reflection amplitudes (from the left rn,n+1 and the right rn+1,n)
of the electromagnetic wave from a single Znδ(x − xn) scatter,
located at the contact of two semi-infinite media I and II at
x = xn. Using the results of the transmission and reflection
amplitudes for the single scatter, we will build characteristic
determinant DN for N scatters and obtain the total transmis-
sion tN and reflection amplitudes rN

L and rN
R . The transmission

amplitudes from left and from right equal to each other are
given by

tn,n+1 = tn+1,n ≡
2
√

kn
kn−1

1 + kn
kn−1

− i γ

kn−1
Zn

, kn = ω

c
n, γ ≡

(ω

c

)2
.

(A2)

Similarly,

rn,n+1 = 1 − kn+1

kn
+ i γ

kn
Zn

1 + kn+1

kn
− i γ

kn
Zn

, rn+1,n =
kn+1

kn
− 1 + i γ

kn
Zn

1 + kn+1

kn
− i γ

kn
Zn

.

(A3)

We can easily verify by using Eqs. (A2) and (A3) that the
conservation law is satisfied, provided that Zn is real:

tn,n+1t∗
n,n+1 + rn,n+1r∗

n,n+1

=
4 kn

kn−1
+ (

1 − kn
kn−1

)2 + (
γ

kn−1
Zn

)2(
1 + kn

kn−1

)2 + (
γ

kn−1
Zn

)2 = 1. (A4)

In the case of a complex value Zn, the conservation law can-
not hold, since the system is not PT symmetric and can be
described by only a complex energy eigenvalue. Later, when
we “build” the characteristic determinant DN for the entire
system with N complex potentials, distributed arbitrarily, we
will return to the conservation law of the system in more
detail.

Assuming that we know the explicit expression for the
amplitude of reflection from a single-scattering delta potential
[see Eq. (A3)], we now turn to a closer investigation of the
system with two complex potentials. Following Ref. [60],
we can present the determinant D2 of two delta potentials
located at points x1 and x2 (L = x2 − x1) on the left and right
boundaries of a dielectric slab surrounded by two semi-infinite
media with permittivities ε0 (left) and ε2 (right), respectively.
The dielectric slab itself is characterized by permittivity ε1.
The explicit form of D2 is

D0
2 = 1

(1 + r21)(1 + r32)
det D2, (A5)

where

det D2 ≡
∣∣∣∣ 1 r23eik1(x2−x1 )

r21eik1(x2−x1 ) 1

∣∣∣∣, (A6)

and rn,n+1 is given by Eq. (A3) with the appropriate choice of
n and Zn. Let us add another boundary from the right, at the
point x3, i.e., we consider a layered heterostructure consisting
of two films with permittivities ε1 and ε2, placed between two
semi-infinite media ε0 and ε3.

Next, adding another delta complex potential Z3 at x3 the
new D3, which now is a 3 × 3 determinant, can be written as

D0
3 =

3∏
l=1

1

(1 + rl+1,l )
det D3 (A7)

where

det D3 ≡
∣∣∣∣∣∣

1 r23eik1(x2−x1 ) r34eik1(x2−x1 )eik2(x3−x2 )

r21eik1(x2−x1 ) 1 r34eik2(x3−x2 )

r21eik1(x2−x1 )eik2(x3−x2 ) r32eik2(x3−x2 ) 1

∣∣∣∣∣∣. (A8)
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By continuing adding new boundaries and complex potential
Zn at the points x4, . . ., xN , we will obtain an N-multilayer
system, each layer of which contains two delta potentials.
This system will be characterized by the product of N by N
determinant DN ,

D0
N =

N∏
l=1

1

(1 + rl+1,l )
det DN

l,n, (A9)

with the following matrix elements DN
l,n:

DN
l,n =

{
δln + (1 − δln)rl,l−1eikl |xl −xn|, l � n,

δln + (1 − δln)rl−1,l eikl |xl −xn|, n � l.
(A10)

The characteristic determinant DN can be presented as a de-
terminant of a Toeplitz tridiagonal matrix that satisfies the
following recurrence relationship:

DN = AN DN−1 − BN DN−2,

where DN−1 (DN−2) is the determinant equation (A10) with
the N th and also the (N − 1)th row and column omitted.
The initial conditions for the recurrence relations are D0 = 1,
D−1 = 0, and D1 ≡ A1 = 1. The coefficients AN and BN can
be obtained from the explicit form of DN

n,l [see Eq. (A10)]. For
N > 1 we have

An = 1 + rn,n+1

rn−1,n
(1 + rn−1,n + rn,n−1)e2ikn|xn−xn−1|

= 1 + Bn − rn,n−1rn,n+1e2ikn|xn−xn−1|

and

Bn = rn,n+1

rn−1,n
(1 + rn,n−1)(1 + rn−1,n)e2ikn|xn−xn−1|.

In concluding, let us stress once more that Eqs. (A9) and
(A10) may be viewed as generalizations of the characteristic
determinant method that can be applied to the Helmholtz
(Schrödinger) equation with complex potentials, distributed
arbitrarily, and we can find scattering matrix elements without
actually determining the photon (electron) eigenfunctions.
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